Food Web Interactions and Ecosystem Processes

Ecosystem process rates can be sensitive to changes in trophic structure and biodiversity. Linkages in real food webs are far more complex than simplified trophic-levels suggest, but it currently remains unclear how much of this complexity is needed to maintain ecosystem functioning. The goal of this work is to identify modules within complex food webs that can be used to understand the effects of changes in biodiversity on ecosystem processes. Results to date demonstrate the importance of linkages between detritus and primary producer food webs, and they emphasize the importance of studying functionally complete food webs.

Google Scholar

Selected Publications:

DescriptionYearCitationpdf
2021Hines, J. and H. M. Pereira. 2021. Biodiversity: monitoring trends and implications for ecosystem functioning. Current Biology 31: PR1390-R1392 link
2021Schmidt, A.; J. Hines, M. Türke, F. Buscot, M. Schädler, A. Weigelt, A. Gebler, S. Klotz, T. Liu, S. Reth, J. Roy, S. Trogisch, C. Wirth, N. Eisenhauer. 2021. The iDiv Ecotron - a flexible research platform for multitrophic biodiversity research. Ecology and Evolution: DOI: 10.1002/ece3.8198 link
2021Hines, J. and N. Eisenhauer. 2021. Species change and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting multiple ecosystem responses. Oikos: 130: 1692-1703 doi.org/10.1111/oik.08333 link
2021Crawford, M., K. Barry, A. Clark, C. Farrior, J. Hines, E. Ladouceur, I. Marechaux, F. May, B. Reineking, L. Turnbull, C. Wirth, N. Rüger. 2021. The function-dominance correlation drives the direction and strength of biodiversity-ecosystem functioning relationships. Ecology Letters: 24:1762–1775 link
2021Eisenhauer, N. and J. Hines. 2021. Invertebrate Biodiversity and Conservation. Current Biology 31: R1141–R1224 link
2021Beaumelle, L., L. Thouvenot, J. Hines, N. Eisenhauer, M. Jochum, H. Phillips. 2021. Soil fauna diversity and chemical stressors: a review and roadmap for future research. Ecography: 4: 845-859 https://doi.org/10.1111/ecog.05627 link
2020Barnes, A. D., C. Scherber, U. Brose, E. T. Borer, A. Ebeling, B. Gauzens, D. GilingP, J. Hines, F. Isbell, C. Ristok, D. Tilman, W. W. Weisser, N. Eisenhauer. 2020. Biodiversity enhances the multi-trophic control of herbivory. Science Advances 6: eabb6603 DOI: 10.1126/sciadv.abb6603 link
2020Phillips, H.R.P., L. Beaumelle, N. Eisenhauer, J. Hines, and L.C. Smith. 2020. Lessons from the WBF2020: extrinsic and intrinsic value of soil organisms. Soil Organisms 92 (2): 121-127. link
2020Craven, D., M. T. van der Sande, C. Meyer, K. Gerstner, J. M. Bennett, D. P. GilingP, J. Hines, H. R. P. Phillips, F. May, K. H. Bannar-Martin, J. M. Chase, P. Keil. Does biodiversity drive productivity or vice versa? A cross-grain assessment. 2020. Global Ecology and Biogeography 29: 1940-1955 link
2020Hines, J. and F. de Vries. 2020. Dirt is not dead: land use and living soil. Special Issue on Soil Biodiversity in Frontiers for Young Minds 8: 549486. doi: 10.3389/frym.2020.549486 link
2020Bowler, D.E., Bjorkmann, A., Navarro, L., Niamir, A., Waldock, C., Dornelas, M., O’Connor, M., Supp, S., Böhning-Gaese, K., Bruelheide, H., Elahi, R., Henriques Antao, L., Hines, J., Isbell, F., Jones, H., Magurran, A., Sarmento Cabral, J., Winter, M. Vellend, M. & A.E. Bates. 2020. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature. DOI: 10.1002/pan3.10071 link
2020Buzhdygan, O., S. T. Meyer, W. W. Weisser, N. Eisenhauer, A. Ebeling, S. R. Borrett, N. Buchmann, R. Cortois, G. De Deyn, H. de Kroon, G. Gleixner, L. Hertzog, J. Hines, M. Lange, L. Mommer, J. Ravenek, C. Scherber, M. Scherer-Lorenzen, S. Scheu, B. Schmid, K. Steinauer, T. Strecker, B. Tietjen, A. Vogel, A. Weigelt, J. S. Petermann. 2020. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nature Ecology and Evolution: doi.org/10.1038/s41559-020-1123-8 link
Using BioTime data set we show that repeated sampling of marine communities show more variability than terrestrial communities2019Blowes, S. and S. Supp, L. Antão, A. Bates, H. Bruelheide, J. Chase, F. Moyes, A. Magurran, B. McGill, I. Myers-Smith, M. Winter, A. Bjorkman, D. Bowler, J. E.K. Byrnes, A. Gonzalez, J. Hines, F. Isbell, H. Jones, L. M. Navarro, P. Thompson, M. Vellend, C. Waldock, M. Dornelas. 2019. Biodiversity trends are stronger in marine than terrestrial assemblages. Science: Accepted Preprint online at Biorxiv: doi: https://doi.org/10.1101/457424
2019Hines, J., A. Ebeling, A. Barnes, U. Brose, D. Giling, C. Scherber, S. Scheu, T. Tscharntke, W. Weisser, A. Klein, N. Eisenhauer. 2019. Mapping change in biodiversity and ecosystem function research: Food webs foster integration of experiments and science policy. Advances in Ecological Research 61link
2019Hines, J., D. GilingP, M. Rzanny, W. Voigt, S. T. Meyer, W. W. Weisser, N. Eisenhauer, A. Ebeling. 2019. A meta food web for invertebrate species collected in an experimental grassland. Ecology e02679.link
2019D. GilingP, A. Ebeling, N. Eisenhauer, S. Meyer, C. Roscher, M. Rzanny, W. Voigt, W. W. Weisser, J. Hines. 2019. Plant diversity alters the dominance of stabilising modules in trophic networks. Nature Communications 10: 1226 link
2019Eisenhauer, N. H. Schielzeth, A. D. Barnes, K. Barry, A. Bonn1, U. Brose, H. Bruelheide, N. Buchmann7, F. Buscot, A. Ebeling, O. Ferlian, G. T. Freschet, D. P. Giling, S. Hättenschwiler, H. Hillebrand, J. Hines, F. Isbell, E. Koller-France, B. König-Ries, H. de Kroon, S. T. Meyer, A. Milcu, J. Müller, C. A. Nock, J. S. Petermann, C. Roscher, C. Scherber, M. Scherer-Lorenzen, B. Schmid, S. A. Schnitzer, A. Schuldt, T. Tscharntke, M. Türk, N. M. van Dam, F. van der Plas2, A. Vogel, C. Wagg, D. A. Wardle, A. Weigel, W. W. Weisser, C. Wirth, M. Jochum. 2019. A multitrophic, eco-evolutionary perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research.
2019Chase, J., B. McGill, P. Thompson, L. Antao, A. Bates, S. Blowes, M. Dornelas, A. Gonzalez, A. Magurran, S. Supp, M. Winter, A. Bjorkman, H. Bruelheide, J. Byrnes, J. Sarmento Cabral, R. Elahi, C. Gomez, H. Guzman, F. Isbell, I. Myers-Smith, H. Jones, J. Hines, M. Vellend, C. Waldock, M. O’Connor. 2019. Species richness change across spatial scales. Oikos
2019Siebert, J., N. Eisenhauer; C. Poll; S. Marhan; M. Bonkowski; J. Hines; R. Koller; L. Ruess; M. Thakur. 2019 Earthworms modulate the effects of climate warming on soil micro-arthropod richness in an agricultural system. Agriculture, Ecosystems and Environment 278: 78-80.
2019Cameron, E. I. S. Martins, P. Lavelle, J. Mathieu, L. Tedersoo, F. Gottschall, C. Guerra, J. Hines, G. Patoine, J. Siebert, M. Winter, S. Cesarz, M. Delgado-Baquerizo, O. Ferlian, N. Fierer, H. Kreft, T. Lovejoy, L. Montanarella, A. Orgiazzi, H. M. Pereira, H. R. P. Philips, J. Settele, D. H. Wall, N. Eisenhauer. 2019. Global mismatches in aboveground and belowground biodiversity. Conservation Biology link
2019Eisenhauer. N., O. Ferlian, D. Craven, J. Hines, M. Jochum. 2019. Ecosystem responses to exotic earthworm invasion in northern North American forests. Research Ideas and Outcomes 5: e34564 link
2019Hines, J. and P. Keil. 2019. Biodiversity: Common competitors and rare friends. Nature Ecology and Evolution. doi 10.1038/s41559-019-1071-3 link
2019Hines, J. 2019. Ecosystem functioning: How much system is needed to explain function? Current Biology 29: R1072-R1074 pdf
2019Giling, D., L. Beaumelle, H. Phillips, S. Cesarz, N. Eisenhauer, O. Ferlian, F. Gottschall, C. Guerra, J. Hines, A. Sendek, J. Siebert, A. Barnes. 2019. A niche for ecosystem multifunctionality in global change research. Global Change Biology 25: 73-774. link
2019Eisenhauer, N., M. Bonkowski, U. Brose, F. Buscot, W. Durka, A. Ebeling, M. Fischer, G. Gleixner, A. Heintz-Buschart, J. Hines, A. Jesch, M. Lange, S. Meyer, C. Roscher, S. Scheu, H. Schielzeth, S. Schloter, M. Schulz, S. Unsicker, N. M. van Dam, A. Weigelt, W. W. Weisser, C. Wirth, J. Wolf, B. Schmid. 2019. Biotic interactions, community assembly, and ecoevolutionary dynamics as drivers of long-term biodiversity-ecosystem function relationships. Research Ideas and Outcomes 5, e47042 pdf
Life proceeds at a predictable pace. Changes in the timing of key life history events are used as one indicator of changes in global climate. Here we highlight changes in timing of soil activity as an often overlooked aspect of ecosystem response to climate. 2018Eisenhauer, N., S. Hermann, J. Hines, F. Buscot, J. Siebert, M. P. Thakur. Accepted 2018. The dark side of animal phenology. Trends in Ecology and Evolution.

link
Results of a multi-experiment synthesis, testing the influence of trait, phylogenic, and species diversity on plant community stability2018Craven, D., N. Eisenhauer, W. D. Pearse, Y. Hautier, C. Roscher, F. Isbell, J. Connolly, A. Ebeling, J. Griffin, J. Hines, A. Jentsch, N. Lemoine, S. T. Meyer, J. van Ruijven, M. Smith, C. Beierkuhnlein, G. Boenisch, A. Hector, J. Kattge, J. Kreyling, V. Lanta, E. de Luca, H. W. Polley, P. B. Reich , D. Tilman, A. Weigelt, B. Wilsey, P. Manning. 2018. Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology and Evolution.link
Protected areas are typically established based on distribution of species that are visible above ground. We highlight gaps in maps of global soil diversity data, a first step toward considering causes and consequences of matches and mismatches in aboveground-belowground diversity.2018Cameron, E. I. S. Martins, P. Lavelle, J. Mathieu, L. Tedersoo, F. Gottschall, C. Guerra, J. Hines, G. Patoine, J. Siebert, M. Winter, S. Cesarz, M. Delgado-Baquerizo, O. Ferlian, N. Fierer, H. Kreft, T. Lovejoy, L. Montanarella, A. Orgiazzi, H. M. Pereira, H. R. P. Philips, J. Settele, D. H. Wall, N. Eisenhauer. 2018. Global gaps in soil biodiversity data. Nature Ecology and Evolution 2: 1042–1043. link
Motivation and experimental design of "MyDiv", a tree diversity experiment in Germany.2018Ferlian, O. S. Cesarz, D. Craven, J. Hines, K. Barry, H. Bruelheide, F. Buscot, S. Haider, H. Heklau, S. Herrmann, P. Kühn, U. Pruscchitzki, M. Schädler, C. Wagg, A. Weigelt, T. Wubet, N. Eisenhauer. 2018. Mycorrhiza in tree diversity-ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere : 9(5) e02226link
The influence of plant diversity on arthropod communities depends on trophic level and vertical stratification of habitat preferences.2018Ebeling, A., J. Hines, L. Hertzog, M. Lange, S. T. Meyer, N. Simons, W. W. Weisser. 2017. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic and Applied Ecologylink
an R package to estimate energy fluxes in food webs2018Gauzens, B. A. Barnes, M. Jochum, J. Hines, S. Wang, D. Giling, B. Rosebaum, and U. Brose. Fluxweb: an R package to easily estimate energy fluxes in food webs. Methods in Ecology and Evolution. pdf
Global change shifts functional evenness of plant communities and alters ability of diverse species assemblages to support high, but not low, levels of soil ecosystem functions.2018Eisenhauer, N., J. Hines, F. Isbell, F. van der Plas, S. E. Hobbie, C. E. Kazanski, A. Lehmann, M. Liu, A. Lochner, M. C. Rillig, K. Worm, P. B. Reich. 2018. Plant diversity maintains multiple soil functions in future environments. eLife. link
Networks are useful for visualization and quantification of management actions that will directly and indirectly alter ecosystem services.2017Dee, L., S. Allesina, A. Bonn, A. Eklöf, S. D. Gaines, J. Hines, U. Jacob, E. McDonald-Madden, H. Possingham, M. Schröter, R. M. Thompson. 2017. Operationalizing network theory for ecosystem service assessments. Trends in Ecology and Evolution 32: 118-130 link
Global change reduces invertebrate body size but effects are density dependent.2016Hines, J.E., M. Reyes, M.O. Gessner. 2016. Density constrains cascading consequences of warming and nitrogen from invertebrate growth to litter decomposition. Ecology 97: 1635-1642pdf
A reminder that experiments are used to understand mechanisms underlying patterns and processes observed in natural systems-- a response to skepticism from David Wardle.2016Eisenhauer, N., A. Barnes, C. Cesarz, D. Craven, O. Ferlian, F. Gottschall, J. Hines, A. Sendek, J. Siebert, M. Thakur, M. Türke. 2016. Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. Journal of Vegetation Science 27: 1061–1070. pdf
An evaluation of progress and limitations in more than five decades of food web and biodiversity research. Trends suggest that the next generation of ecologists will be prepared to use network analysis to bridge previous gaps between theory and policy. 2015Hines, J., W. H. van der Putten, G. B. De Deyn, C. Wagg, W. Voigt, C. Mulder, W. Weisser, J. Engel, C. Melian, S. Scheu, K. Birkhofer, A. Ebeling, C. Scherber, N. Eisenhauer. 2015. Towards an integration of biodiversity-ecosystem functioning and food-web theory to evaluate connections between multiple ecosystem services. Advances in Ecological Research 53 (1): 161-199 Guy Woodward, David A. Bohan, editors. UK: Academic Press link
We reveal that soil food web variation is a pathway that influences plant growth response to elevated CO2.
Predator populations are more sensitive to climate than basal trophic levels. Realistic changes in soil food chains alter decomposition and plant growth.
2015Hines, J., N. Eisenhauer, B. Drake. 2015. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2. Global Change Biology 21: 4642-4650 pdf
We examine the influence of the Millennium Ecosystem Assessment on research priorities for natural and social sciences. 2015Mulder, C., E. M. Bennett, D. A. Bohan, M. Bonkowski, S. R. Carpenter, R. Chalmers, W. Cramer, I. Durance, N. Eisenhauer, A. J. Haughton, J.-P. Hettelingh, J. Hines, S. Ibanez, E. Jeppesen, J. Adams Krumins, A. Ma, G. Mancinelli, F. Massol, Ó. McLaughlin, S. Naeem, U. Pascual, J. Peñuelas, N. Pettorelli, M. J. O. Pocock, D. Raffaelli, J. J. Rasmussen, G. M. Rusch, C. Scherber, H. Setälä, W. J. Sutherland, C. Vacher, W. Voigt, J. A. Vonk, S. A. Wood, G. Woodward. 2015. 10 Years Later: Revising Priorities for Science and Society a decade after the Millennium Ecosystem Assessment. In Ecosystem Services: From Biodiversity to Society, Advances in Ecological Research: 53 (1) pp. 1-53, Guy Woodward, David A. Bohan, editors. UK: Academic Press link
Environmental problems are becoming increasingly global in scope, which leads to the demand for rapid ecosystem assessments that can be used to compare ecosystem properties across environments. Here we improve upon a method of accurate, rapid ecosystem assessment of soil biological activity.2014Eisenhauer, N., D. Wirsch, S. Cesarz, D. Craven, P. Dietrich, J. Friese, J. Helm, J. Hines, M. Schellenberg, P. Scherreiks, B. Schwarz, S. Uhe, K. Wagner, K. Steinauer. 2014. Organic textile dye improves the visual assessment of the bait-lamina test. Applied Soil Ecology 82: 78–81. link
A comment on responsible science in response to Velland et al's assessment of factors influencing biodiversity changes at a local scale.2014Wright, A. J, M. Bernhardt-Römermann, D. Craven, A. Ebeling, J. Engel, J. Hines, N. Eisenhauer. 2014. Proceedings of Peerage of Science 1: e6. pdf
Do diverse communities have stronger effects on ecosystem functioning under stressful, as opposed to favourable conditions? Here we introduce a paper that tests the stress-gradient hypothesis in an aquatic detritus-detritivore system.2012Gessner, M. O., and J.E. Hines. 2012. Stress as a modifier of biodiversity effects on ecosystem processes? Journal of Animal Ecology 81: 1143-1145. pdf
We present experimental results showing that primary consumers can influence ecosystem process rates not only within, but also
across primary producer and decomposer based food web compartments. Although traditionally divided, these subwebs are tightly linked.
2012 Hines, J.E., and M.O. Gessner. 2012. Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning. Journal of Animal Ecology: 81 1146-1153. pdf
We provide a quantitative and qualitative review of mechanisms that determine the vulnerability of focal plants to herbivores.2009Barbosa, P., J.E. Hines, I. Kaplan, H. Martinson, A. Szczepaniec, Z. Szendrei. 2009. Associational resistance and susceptibility: Having right or wrong neighbors. Annual Review of Ecology, Evolution and Systematics 40: 1-20. pdf
Genetic diversity increases thermal tolerance of foraging ants, which enhances colony fitness. This leads to an apparent paradox where both diversity and relatedness promote benefits of social cooperation.2008Wiernasz, D.C., J. Hines, D.G. Parker, B.J. Cole. 2008. Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Molecular Ecology 17: 1137-1144. pdf
Here, we present a compiled database of the allometry and nutritional
stoichiometry (N and P) of detritivorous arthropods. We test the influence of phylogeny, body size, and trophic level on arthropod elemental composition.
2008Martinson, H.M., K. Schneider, J. Gilbert, J.E. Hines, P.A. Hambäck, W.F. Fagan. 2008. Detritivory: Stoichiometry of a neglected trophic level. Ecological Research 23: 487-491. pdf
What is the sphere of influence of species interactions? Here we show that the influence of soil resource ratios on below ground soil microbial activity extends across four trophic levels to influence abundance of above ground predators.2006 Hines, J.E., J.P. Megonigal, and R.F. Denno. 2006. Nutrient subsidies to belowground microbes impact aboveground food web interactions. Ecology 87: 1542-1555. pdf
Life history traits of planthoppers can be used as key indicators of both habitat fragmentation and nutrient pollution.2006Hines, J.E., M.E. Lynch, and R.F. Denno. 2005. Sap-feeder communities as indicators of habitat fragmentation and nutrient subsidies. Journal of Insect Conservation 9: 261-280. pdf